
PARALLEL IMPLEMENTATION OF MODIFIED

GREEDY ALGORITHMS WITH OPENMP

UNIVERSITI KEBANGSAAN MALAYSIA

RENEA CHOWDHURY SHORMEE

PARALLEL IMPLEMENTATION OF MODIFIED GREEDY ALGORITHMS

WITH OPENMP

2018

RENEA CHOWDHURY SHORMEE

PROJECT SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF

REQUIREMENTS FOR MASTER OF COMPUTER SCIENCE

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

PELAKSANAAN SELARI ALGORITMA TAMAK YANG DIUBAHSUAI

DENGAN OPENMP

2018

RENEA CHOWDHURY SHORMEE

PROJEK YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN

DARIPADA SYARAT MEMPEROLEHI IJAZAH SARJANA SAINS KOMPUTER

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

iii

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged.

04 July 2018 RENEA CHOWDHURY SHORMEE

GP04498

iv

ACKNOWLEDGEMENT

First and foremost praise be to God for all his blessings for giving me patience and

good health throughout the duration of this Project.

I am grateful and thankful to my supervisor Associate Professor Dr Ravie

Chandren Muniyandi who took me as a student and for his patient supervision,

guidance, constructive suggestions and comments during the research period until its

completion. His advice and support throughout the program is invaluable. Without his

tireless help, leadership, and confidence in my ability, completing this project would

not have been possible. I also offer my gratitude to him for opening my mind to a new

world of knowledge for Parallel Computation, opportunities and experiences, and

giving me a better understanding throughout.

I am really grateful to my cousin brother Dr Dip Nandi who encouraged me to

pursue my Master's degree and suggested me to join National University of Malaysia.

Finally, I sincerely thanks my parents for their support and prayer to complete

my study. Special gratitude to my father for supporting me throughout this journey in

Malaysia. I also thank my husband for his moral support all the time.

My gratitude thanks to National University of Malaysia.

v

ABSTRACT

Investigating the multi-core architecture is an essential issue to getting superior in

parallel reenactments. However, the simulation highlights must fit on parallel

programming model keeping in mind the end goal to build the execution. The main

goal of this project is to choose and evaluate parallelism using OpenMP over

sequential program. For this purpose, there is a portrayal of two greedy algorithms.

The calculation to discover the next edge of Prim's algorithm, single source shortest

way of Dijkstra's algorithm. These two calculation actualize in sequential formulation.

The parallel greedy algorithms are then implemented in view of multi core processor

and the speed-up ratio and efficiency of parallel greedy algorithms are tested and

investigated in SGEMM GPU Kernel performance dataset with 241600 records and

18 attributes. Results show the dataset with different data sizes achieved super linear

speed-up ratio and efficiency on OpenMP running 4 cores processor and reduction of

the running time over sequential program. More importantly, the new implementation

drastically decreases the time of execution for thread 8 for Prims algorithm for 5.16

ms to just over 1.48 ms for Dijkstra algorithm. Parallel calculation is impressively

powerful for huge graph size. Parallel Programming can be an exceptionally valuable

approach to work through huge informational datasets and get results about

significantly faster than it had been utilized a sequential execution of a calculation.

Not only it can be more effective but also it can push the architecture of the previous

framework to the most extreme. This paper investigate what multi-threading and

parallelism technique can improve the situation when utilizing them on a parallel

issue. By utilizing these algorithm locate the most limited separation. Parallel

calculation utilized for computing or finding most limited way of graph. With the

assistance of graph algorithm these activities should be possible in parallel and

diminish the calculation time and efficiency. General outcomes show that multi-

threaded parallelism is exceptionally successful to accomplish speedup for data set

based on greedy algorithms by separating the primary data set into sub-datasets to

increase diversity on arrangement investigation.

vi

ABSTRAK

Menyiasat seni bina multi-core adalah isu penting untuk mendapatkan simulasi selari

yang lebih baik. Walau bagaimanapun, sorotan simulasi mesti sesuai dengan model

pengaturcaraan selari dengan mengambilkira matlamat akhir untuk membina

pelaksanaan. Matlamat utama projek ini adalah memilih dan menilai pelaksanaan

selari dengan menggunakan OpenMP melalui program berurutan. Untuk tujuan ini,

terdapat dua algoritma tamak yang digunakan. Pengiraan untuk mencari kelebihan

seterusnya dengan algoritma Prim, dan sumber tunggal cara terpendek dengan

algoritma Dijkstra. Kedua-dua perhitungan ini berlaku dalam rumusan berurutan.

Algoritma tamak selari kemudian dilaksanakan memandangkan pemproses berbilang

teras dan nisbah kelajuan dan kecekapan algoritma tamak selari diuji dan disiasat

dalam dataset prestasi Kernel SGEMM Kernel dengan rekod 241600 dan 18 atribut.

Keputusan menunjukkan dataset dengan saiz data yang berbeza yang mencapai nisbah

laju dan kecekapan super linear dan kecekapan pada OpenMP yang menjalankan 4

teras pemproses dan pengurangan waktu berjalan melalui program berurutan. Lebih

penting lagi, pelaksanaan baru secara drastik menurunkan masa pelaksanaan untuk

thread 8 untuk algoritma Prims untuk 5.16 milisaat kepada lebih dari 1.48 milisaat

untuk algoritma Dijkstra. Pengiraan selari sangat mengagumkan untuk ukuran graf

yang besar. Pemprograman selari boleh menjadi satu pendekatan yang sangat berharga

untuk bekerja melalui dataset maklumat yang besar dan mendapatkan hasil yang lebih

cepat daripada yang telah digunakan untuk melaksanakan satu perhitungan berjadual.

Bukan sahaja ia boleh menjadi lebih berkesan tetapi juga boleh mendorong seni bina

rangka kerja sebelumnya kepada yang paling melampau. Kertas kerja ini menyiasat

teknik-teknik multi-threading dan parallelism yang dapat memperbaiki keadaan ketika

menggunakannya pada masalah selari. Dengan menggunakan algoritma ini,

pengasingan yang paling terhad. Pengiraan selari digunakan untuk pengkomputeran

atau mencari cara graf yang paling terhad. Dengan bantuan algoritma graf, aktiviti-

aktiviti ini boleh dilakukan secara selari dan mengurangkan masa pengiraan dan

kecekapan. Hasil umum menunjukkan bahawa paralelisme multi-threaded sangat

berjaya untuk mencapai kelajuan untuk menetapkan algoritma tamak berdasarkan data

dengan memisahkan data utama yang ditetapkan ke dalam sub-dataset untuk

meningkatkan kepelbagaian pada penyelidikan pengaturan.

vii

TABLE OF CONTENTS

 Page

DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF ILLUSTRATIONS xi

LIST OF ABBREVIATIONS xiii

CHAPTER I INTRODUCTION

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Research Question 3

1.4 Research Objectives 4

1.5 Research Methodology 4

1.6 Research Scope 5

1.7 Organization of the Thesis 5

CHAPTER II LITERATURE REVIEW

2.1 Introduction 7

2.2 Framework of Literature Review 7

2.3 Searching Algorithm 9

2.3.1 Greedy Algorithm 9
2.3.2 Prim's Algorithm 11
2.3.3 Dijkstra's Algorithm 15

2.4 Sequential Computation 18

2.5 Parallel Computation 19

2.6 OpenMP Parallel Program 19

2.6.1 Introduction to OpenMP 19
2.6.2 API Components 20
2.6.3 Background 21

viii

2.6.4 Purpose and Advantages 22
2.6.5 Architecture 23
2.6.6 Memory Model 24
2.6.7 Programming Model 25

2.6.8 Fork-Join Model 26
2.6.9 Execution Model 27
2.6.10 Applications 28

2.7 Related Work 28

2.8 Summary 31

CHAPTER III METHODOLOGY

3.1 Introduction 32

3.1.1 Research Method 32

3.2 Explanation of Sequential Algorithm 34

3.3 OpenMP Parallel Analysis 35

3.4 Explanation of Parallel Execution 35

3.4.1 Explanation of Parallel Prim's Algorithm 36
3.4.2 Explanation of Parallel Dijkstra Algorithm 38

3.5 Explanation of Implementation 40

3.5.1 OpenMP Core Syntax 41

3.5.2 Number of Threads 42
3.5.3 Reduction Operators 43

3.5.4 Parallel Execution Time 43

3.6 Summary 44

CHAPTER IV PERFORMANCE ANALYSIS AND RESULTS

4.1 Introduction 45

4.2 System Configuration 45

4.2.1 Hardware Configuration 45

4.2.2 Software Configuration 45

4.3 Dataset 46

4.4 Parallel Process with the Dataset 47

4.5 Performance Metrics 47

4.5.1 Execution Time 47
4.5.2 Speed-up Ratio 48
4.5.3 Efficiency 48

4.6 Result 49

4.6.1 Sequential Program 49

ix

4.6.2 Parallel Program 51
4.6.3 Analysis 55

4.7 Discussion 60

CHAPTER V CONCLUSION AND FUTURE WORKS

5.1 Introduction 62

5.2 Significance of Research 62

5.3 Findings of the Research 63

5.4 Limitations and Future Works 64

REFERENCES 65

Appendix A Sequential computation of Prim's Algorithm 68

Appendix B Sequential Program of Dijkstra's Algorithm 70

Appendix C Parallel Program of Prim's Algorithm 72

Appendix D Parallel Program of Dijkstra's Algorithm 74

x

LIST OF TABLES

Table No. Page

Table 4.1 Computation time for sequential program 49

Table 4.2 Parallel contrast time of Prim's algorithm for different

threads 52

Table 4.3 Parallel contrast time of Dijkstra's algorithm for different

threads 54

Table 4.4 Speed-up ratio of Prim's algorithm for different threads 57

Table 4.5 Speed-up ratio of Dijkstra's algorithm for different threads 58

Table 4.6 Efficiency of Prim's algorithm for different threads 59

Table 4.7 Efficiency of Dijkstra's algorithm for different threads 59

xi

LIST OF ILLUSTRATIONS

Figure No. Page

Figure 1.1 Overview of proposed work 2

Figure 1.2 Research Methodology 4

Figure 1.3 Performance evaluation 5

Figure 2.1 Framework of literature review 8

Figure 2.2 Construction of Prim's algorithm 14

Figure 2.3 Steps of Dijkstra's algorithm 17

Figure 2.4 History of OpenMP 22

Figure 2.5 Architecture of OpenMP 23

Figure 2.6 Shared memory model 24

Figure 2.7 Distributed memory model 25

Figure 2.8 Architecture of UMA 25

Figure 2.9 Architecture of NUMA 26

Figure 2.10 Fork join model 26

Figure 2.11 Execution model of OpenMP 27

Figure 3.1 Method Process 33

Figure 3.2 Steps of analysis 34

Figure 3.3 C programming for calculating sequential execution time 34

Figure 3.4 Application of OpenMP on Prim's algorithm 37

Figure 3.5 Using #pragma OpenMP for Dijkstra's algorithm 38

Figure 3.6 Iteration during Execution 41

Figure 3.7 Parallel work flow 42

Figure 3.8 Using threads for this study of OpenMP 43

Figure 3.9 Using reduction clause 43

xii

Figure 3.10 OpenMP source code for calculating execution time 44

Figure 4.1 SGEMM GPU Kernel performance dataset for the

experiment 46

Figure 4.2 Sequential time of five different data sizes for two

algorithms 50

Figure 4.3 Sequential time of SGEMM dataset for Prim's algorithm 50

Figure 4.4 Sequential time of SGEMM dataset for Dijkstra's algorithm 51

Figure 4.5 Prim's algorithm for different threads with different sizes of

data 52

Figure 4.6 Computation time of Prim's algorithm for different threads

with SGEMM dataset 53

Figure 4.7 Comparison of Dijkstra's algorithm for different threads

with different sizes of data 54

Figure 4.8 Computation time of Dijkstra's algorithm for different

threads with SGEMM dataset 55

Figure 4.9 Performance analysis of Prim's algorithm for sequential

program and different threads with different data sizes 56

Figure 4.10 Performance analysis of Dijkstra's algorithm for sequential

program and different threads with different data sizes 56

Figure 4.11 Efficiency of Prim's algorithm 59

Figure 4.12 Efficiency of Dijkstra's algorithm 60

xiii

LIST OF ABBREVIATIONS

API Application Programming Interface

CUDA Compute Unified Device Architecture

MPI Message Passing Interface

MST Minimum Spanning Tree

NUMA Non-Uniform Memory Access

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PVM Parallel Virtual Machine

UMA Uniform Memory Access

CHAPTER I

INTRODUCTION

1.1 RESEARCH BACKGROUND

Finding the shortest distance for all objects in a graph is a common task in solving

many day to day and logical issues. The algorithm for finding the shortest path,

discover their application in numerous fields, for example, Google maps, routing

protocol and so on. There are two algorithms for finding the most limited way and

single source shortest way, utilizing two algorithms Prims algorithm and Dijkstra's

algorithm. The shortest way calculation is the fundamental algorithm for research

hotspot. To improve the searching the best use of shortest path is to implement the

parallelism. It’s use as in the parallel algorithm. Otherwise in serial implementation it

is very difficult to improve its performance for Dijkstra’s algorithm(Cao et al. 2009).

In sequential algorithm implementation, it requires long time to discover the

most shortest distance if all sets of vertices are in the graph. So it is troublesome

assignment to locate the most nearest node from source to goal. Consequently utilize

the parallel algorithm or parallel processing takes less time than the sequential

execution. And it is easy to calculate and find the most nearest node or path for

algorithms or numerous different applications. Both of the greedy algorithm problem

starts initially considering source as A to all other vertices in datasets. These two

algorithm Prims and Dijkstra’s algorithm are most important to find the shortest path.

The graph solving problems increment in measure, effective parallel most limited way

handling ends up imperative as computational and memory prerequisites increment

(Awari 2017).

2

 Figure 1.1 Overview of proposed work

For large structure or framework it requires long time to perform their tasks

and this is the reason why the parallelization used to perform operation in less time.

Execution for the task in less time to diminish the proficiency and speedup factor

utilizing the OpenMP and furthermore utilize the parallel Prims algorithm, parallel

Dijkstra algorithm(Awari 2017). The overview of the proposed work has been shown

in figure 1.1. Parallel computers can be generally classified as Multi-Core and

Multiprocessor. A core is the piece of the processor which performs perusing and

executing of the guideline. However as the name implies, Multicore processors are

made out of in excess of one core. An extremely regular case would be a dual core

processor. The upside of a multicore processor over a single core one is that the multi-

core processor can either utilize the two cores to achieve a solitary undertaking or it

can traverse threads which separated tasks between the two of its cores, with the goal

that it requires double measure of investment it would take to execute the assignment

than it would on a single core processor. Multicore processors can likewise execute

various assignments at a single time. Execution is the action of gathering the data

about the execution attributes of a program(Pathare & Kulkarni 2014).

Prim's Algorithm Dijkstra's Algorithm

Problem

Sequential Execution
Parallel Execution

 Calculate the

execution time

Calculate the

execution time

Compare and analyze the results

3

This chapter shows a review about the research. It identifies the research issues

and the requirement for doing such research. This chapter additionally illuminates

research conditions by obviously characterizing research scope and methodologies

together with the setting up of the research objectives.

1.2 PROBLEM STATEMENT

With the rapid improvement of urban communities, congested road turned into a

concerning issue. Along these lines the Intelligent Traffic System is developing

rapidly and the shortest path optimization is an important part of this problem. This

issue has been the research hotspot for long time and for the sequential shortest path

optimization, individuals have gotten numerous research comes about and applied in

many applications(Cao et al. 2009).

Big data mostly comes from people’s day-to-day activities and Internet-based

companies. Big data represents content and cloud computing is an environment that

can be used to perform tasks on big data. Nonetheless, the two concepts are

connected. In fact, big data can be processed, analyzed, and managed on cloud.

Parallel algorithms can be implemented in the cloud-computing environment to

reduce computation time, memory usage and I/O overhead for generating frequent

item sets(Reyes-Ortiz et al. 2015).Moreover, several single source shortest path

algorithms and minimum spanning tree have been computed in order to resolve this

issue, to saves time using parallel process to quickly focus only on the results of

attentiveness. For this study, the parallel computation is a proficient method to

enhance the greedy algorithms containing large data.

1.3 RESEARCH QUESTION

The study aimed to answer the following Research Questions (RQ):

1) What is the suitable programming process to execute the simulation in less

amount of time for large datasets of greedy algorithms?

4

2) How can the proposed parallel process is going to influence the performance

of two greedy algorithms?

1.4 RESEARCH OBJECTIVES

This research aim to achieve the following objectives:

1) To propose and implement the programming process between sequential and

parallel programming that required the less execution time for large datasets.

2) To investigate and evaluate the performance of parallel process using OpenMP

over sequential programming of two greedy algorithms.

1.5 RESEARCH METHODOLOGY

The research methodology of this study has been distributed into three stages.

To begin with stage 1 is concentrating on the sequential algorithm process including

the implementation, execution of time, with the scenario of datasets.

Figure 1.2 Research Methodology

While, the second stage is focusing on the parallelism procedure for the

executed sequential greedy algorithms while encompasses a required number of

threads and applying such process with observing the outcomes for those threads.

Lastly, the third stage will focus on the assessment of the proposed process by

5

comparison.Here, the Figure 1.2 demonstrates the research methodology of this

research.

1.6 RESEARCH SCOPE

This research has been done on sequential algorithms using parallel component. The

parallelism requires multicore processors with the goal that it can span threads which

isolated tasks between its cores. In the space of this exploration, this study address

two kinds of greedy algorithms: Prims and Dijkstra algorithms. By utilizing OpenMP,

consuming or reducing the execution time for outlining the parallel programs, so large

problems can be settle in less measure of time(Awari 2017).

Figure 1.3 Performance evaluation

As well as compute the performance assessment parameter speedup and

efficiency based on the algorithms. The work process of the proposed study is

appeared in figure 1.3.

1.7 ORGANIZATION OF THE THESIS

This thesis is composed into five chapters; these parts are condensed as takes after:

Chapter I give a prologue to the research background and recognize the current

problem statement regarding the OpenMP parallel procedure over sequential program.

Speed up

Efficiency

Performance

evaluation

Execution Time

6

This chapter likewise portrays the objectives, strategy and scope of the study and

research significance.

Chapter II displays a literature review for greedy algorithms, Prims algorithm,

Dijkstra algorithm, Parallel programming and OpenMP. At that point the related work

includes the steps and mechanisms that proposed to reduce the execution time. At last,

a synopsis closes the chapter.

Chapter III illustrates the methodology that was actualized to accomplish the

research objectives. Especially, it portrays in points of interest the simulation

environment and the parameters as to representation of the work. Likewise this

chapter discusses about the point by point clarification about outline contemplations.

Furthermore, the process of method for this experiment has been described over here.

Here this study explain the sequential algorithm. Then the analysis of OpenMP with

an example of a program. This chapter additionally has an explanation of parallel

execution of both algorithms by introducing the #pragma and multi-threading features

of OpenMP. At last, this chapter end with a summary of parallel workflow and

techniques.

Chapter IV investigates the reenactment come about by utilizing different

performance metrics, which are execution time, speed-up ratio and efficiency. Various

simulation runs have been done to get the results. There are comparisons between two

programming techniques using two different algorithms. Simulation results and

discussion are described at the end of this chapter.

Chapter V gives a synopsis to the investigation comes about, draws some

conclusions about them, research findings, inquire about significances. It additionally

incorporates recommendations for the future works potential thoughts which are

identified with the current research.

7

7

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

With the advancement of Computer and data innovation, the research about graph

hypothesis get an extensive variety of consideration, and an assortment of data

structures and algorithms have been proposed.The shortest path algorithm is always a

research hotspot in graph theory and it is the most basic algorithm. For instance,

searching the shortest path is utilized to implement activity designing in IP organizes

and to enhance Intelligent and Transportation Systems. But for that kind of algorithm

it is extremely hard to enhance its execution. At present the algorithms for the

sequential searching optimization have reached the time limitation. Subsequently the

parallel computation is an effective method to enhance the performance. By putting a

few constraints on the data and taking the benefit of the hardware, the execution of the

algorithms can be essentially progressed(Cao et al. 2009).

2.2 FRAMEWORK OF LITERATURE REVIEW

In this chapter it describe the related work of the objectives of the project. In addition,

this study present the framework of Literature Review of all research studies as shown

in Figure 2.1.

8

8

Literature Review

(2.4) Sequential

Computation

(2.5) Parallel

Computation

(2.3) Searching

Algorithm

(2.6) OpenMP Parallel Program

(2.3.1) Greedy Algorithm

(2.3.2) Prim's Algorithm

(2.3.3) Dijkstra's Algorithm

(2.6.1) Introduction to OpenMP

(2.6.2) API

Components

(2.6.3) Background

(2.6.4) Purpose and Advantages
(2.6.7) Fork-Join

Model

(2.6.6)Programming Model

(2.6.5)Architecture

(2.6.8)Execution Model

MST Single source shortest path

(2.6.9) Applications

Figure 2.1 Framework of literature review

9

2.3 SEARCHING ALGORITHM

A search algorithm is the step-by-step procedure used to find particular information

among a collection of data. It is considered as a fundamental procedure in computing.

In software engineering, while searching for data, the difference between a quick

application and a slower one regularly lies in the utilization of the proper search

algorithm.

2.3.1 Greedy Algorithm

Greedy algorithm work in stages. In each stage, a choice is made that seems to be

good, without regards for future results. For the most part, this implies some local

optimum is picked. This "take what you can get now" technique is the source of the

name for this class of algorithms. At the point when the algorithm ends, it is hoped

that the local optimum is equivalent to the global optimum. If so, at that point the

algorithm is right. Otherwise, the algorithm has delivered a suboptimal arrangement.

In the event that the most perfect answer isn't required, at that point straightforward

greedy algorithms are now and then used to create approximate answers, as opposed

to utilizing the more complicated algorithms for the most part required to produce a

correct answer. There are a few real-life cases of greedy algorithms.

The most evident is the coin-changing issue. To roll out improvement in U.S.

currency, it over and again dispense the largest denomination. In this manner, to give

out seventeen dollars and sixty-one cents in transform, it gives out a ten-dollar charge,

a five-dollar charge, two one-dollar charges, two quarters, one dime and one penny.

By doing this, they are ensured to minimize the quantity of bills and coins. This

algorithm does not work in every monetary framework, but rather luckily, this can

demonstrate that it works in the American money related framework. Indeed, it works

regardless of whether two-dollar bills and fifty-cent pieces are permitted(Fallis 2013).

Traffic problems give a case where settling on locally optimal decisions does

not continuously work. For instance, amid certain rush hour times in Miami, it is best

to remain off the prime streets regardless of whether they look empty, in light of the

10

fact that traffic will grind to a halt a mile not far off, and people will be trapped.

Considerably all the more stunning, it is better now and again to influence an

impermanent bypass toward the path inverse your goal so as to maintain a strategic

distance from all traffic bottlenecks(Fallis 2013).

A greedy algorithm settles on a locally optimal choice with the expectation

that this decision will prompt a globally optimal solution. The decision made at each

progression must be:

i) Feasible : Satisfy the problem's limitations

ii) Locally Optimal: Be the best nearby decision among every single

decision

iii) Irrevocable: Once made, the decision can't be changed on resulting

steps

Optimal solution are:

a) Change making

b) Minimum Spanning Tree (MST)

c) Single-source shortest paths

d) Huffman Algorithm

In this proposed work, this study is considering Dijkstra and Prim's algorithm.

Both of them are greedy algorithms but have some different criteria. Prim's algorithm

is a MST search algorithm and Dijkstra's algorithm is a single source shortest path

algorithm.

11

a. MST

The MST of a graph is the arrangement of edges that associate each vertex contained

in the original graph, such that the total weight of the edges in the tree is minimized.

In spite of the fact that this problem discover its application in a few areas, it assumes

a more significant part in Very Large Scale Integration (VLSI) outline and system

steering. The examination on MSTs has been dynamic for quite a few years, during

which various MST solvers and usage have been proposed. In numerous application

spaces, for example, impromptu systems, MST-solvers are frequently required, in this

manner requesting proficient executions.

b. SSSP

The single source shortest path problem is that of computing, for a given source vertex

s and a destination vertex t, the weight of a path that obtains the minimum weight

among all the possible paths. Dijkstra's algorithm is a graph search algorithm that

solves single-source most limited way for a graph with non-negative weights. Widely

utilized as network routing protocol.

In this paper, the proposed algorithms are Prim's algorithm and Dijkstra's

algorithm. Dijkstra's algorithm is for single source shortest path and Prim's algorithm

is for MST. The primary distinction between the two is the rule that is utilized to pick

the following vertex for the tree. Prim pick the nearest vertex to any vertex in the

MST. Though, Dijkstra pick the nearest vertex from the source vertex.

2.3.2 Prim's Algorithm

The algorithm was found in 1930 by mathematician Vojtech Jarnik and later

independently by computer scientist Robert C. Prim in 1957. MST algorithm have

been implemented in a several parallel computing devices, for example, an

amalgamation of Prim's algorithm on multicore CPU chips. Sequential

implementations of Prim's algorithm is very simple and its execution changes with the

input graph and the data structures utilized. During the late 90s, the exploration

12

around these MST algorithms spun around implementation points of interest to

enhance the execution of the algorithms and some were appeared to be of awesome

impact on the performance of the algorithms(Prim 1957). The algorithm constantly

builds the measure of a tree beginning with a single vertex until the point when it

spans all the vertices.

Prim's algorithm is a Greedy Algorithm. It begins with an empty spanning tree.

The idea is to keep up two sets of vertices. The first set contains the vertices already

included into the MST, the other set contains the vertices not yet included(Cormen et

al. 2002). At each progression, it consider all the edges that connect the two sets and

picks the minimum weight edge from these edges. After picking the edge, it moves

the other endpoint of the edge to the set containing MST(Fallis 2013).

Prim's algorithm is a MST algorithm that works much like Dijkstra's algorithm

which improves the situation shortest path trees. Truth be told, it's even simpler. So

the algorithm is the same as Dijkstra's algorithm, aside from the programmer don't

include distance to the length of the edge when choosing which edge to put in next.

MST-PRIM (G, w, r) pseudocode:

1 for each u ϵ G.V

2 u. key = ∞ 1

3 u.π = NIL

4 r. key = 0

5 Q = G.V

6 while Q ≠ Ø π ϕ

7 u = EXTRACT-MIN(Q)

8 for each v ϵ G. Adj[u]

9 if v ϵ Q and w(u, v) < v. key

10 v. π = u

11 v. key = w(u, v)

Source: (Chen, n.d.)

So, at each progression of Prim's algorithm, it locate a cut of two sets, one

contains the vertices officially incorporated into MST and another contains rest of the

vertices and pick the minimum weight edge from the cut and include this vertex to

MST Set (the set that contains effectively included vertices).

13

The pseudo code of Prim's algorithm has been represented in the previous

page. The work flow according to this has been described below:

Step 1: Choose any vertex as a starting vertex. At that point discovered all the

associated edges to that vertex and their weights. Compare between the edges and

discover the minimum weights. Vertex that contain minimum weights from the

beginning node should be added to the tree.

Step 2: Now it should take a look at all the nodes or vertices of the tree and

find out all the edges associated with those tree nodes. This ought to likewise discover

the weights of those edges and attempt to find out the minimum weights. Finally this

should include the nodes with minimal weights to the tree.

Step 3: Repeat the steps until the point that all the vertices are in the tree or

visited.

The figure 2.2 shows the steps of Prim's algorithm using the flow of algorithm

from the pseudo code. The algorithm flow takes after:

i) Suppose, beginning from a vertex u0 in the associated graph G =

(V,{E}), the base weight edge (u0, u1) related with it is chosen and its

vertices are added to the vertex set U of the spreading over tree.

ii) Each progression is then chosen from the edges (u, v) whose vertices

are incorporated into U and alternate vertices are most certainly not.

The edges are added to the edge set TE of the base crossing tree, while

alternate vertices are added to the set U.

iii) Repeat this procedure until the point that all the vertices are added to

the vertex set U of the crossing tree. The way towards developing the

base crossing tree utilizing Prim algorithm is illustrated in Fig.2.2,

where V1toV6 are the objective focuses, and the number between the

two target focuses is the weight between the two target focuses.

